Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38646787

RESUMO

The dystrophin (DMD) gene is recognized for its significance in Duchenne muscular dystrophy (DMD), a lethal and progressive skeletal muscle disease. Some DMD patients, as well as model mice with muscular dystrophy (mdx), spontaneously develop various types of tumors, among which rhabdomyosarcoma (RMS) is the most prominent. By contrast, spindle cell sarcoma (SCS) has rarely been reported in patients or mdx mice. In this study, we aimed to use metabolomics to better understand the rarity of SCS development in mdx mice. Gas chromatography-mass spectrometry was employed to compare the metabolic profiles of spontaneously developed SCS and RMS tumors from mdx mice, and metabolite supplementation assays and silencing experiments were used to assess the effects of metabolic differences in SCS tumor-derived cells. The levels of 75 metabolites exhibited differences between RMS and SCS, 25 of which were significantly altered. Further characterization revealed downregulation of non-essential amino acids, including alanine, in SCS tumors. Alanine supplementation enhanced the growth, epithelial-mesenchymal transition, and invasion of SCS cells. Reduction of intracellular alanine via knockdown of the alanine transporter Slc1a5 reduced the growth of SCS cells. Lower metabolite secretion and reduced proliferation of SCS tumors may explain the lower detection rate of SCS in mdx mice. Targeting of alanine depletion pathways may have potential as a novel treatment strategy.

2.
Hum Genome Var ; 11(1): 15, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514645

RESUMO

Recently, heterozygous loss-of-function NFKB1 variants were identified as the primary cause of common variable immunodeficiency (CVID) in the European population. However, pathogenic NFKB1 variants have never been reported in the Japanese population. We present a 29-year-old Japanese woman with CVID. A novel variant, c.136 C > T, p.(Gln46*), was identified in NFKB1. Her mother and daughter carried the same variant, demonstrating the first Japanese pedigree with an NFKB1 pathogenic variant.

3.
Muscle Nerve ; 69(5): 604-612, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38511270

RESUMO

INTRODUCTION/AIMS: Duchenne muscular dystrophy (DMD) presents with skeletal muscle weakness, followed by cardiorespiratory involvement. The need for longitudinal data regarding DMD that could serve as a control for determining treatment efficacy in clinical trials has increased notably. The present study examined the longitudinal data of Japanese DMD patients collectively and assessed individual patients with pathogenic variants eligible for exon-skipping therapy. METHODS: Patients with DMD who visited Kobe University Hospital between March 1991 and March 2019 were enrolled. Data between the patients' first visit until age 20 years were examined. RESULTS: Three hundred thirty-seven patients were included. Serum creatine kinase levels showed extremely high values until the age of 6 years and a rapid decline from ages 7-12 years. Both the median 10-m run/walk velocity and rise-from-floor velocity peaked at the age of 4 years and declined with age. The values for respiratory function declined from the age of 11 years. The median left ventricular ejection fraction was >60% until the age of 12 years and rapidly declined from ages 13-15 years. Examination of the relationship between pathogenic variants eligible for exon-skipping therapy and longitudinal data revealed no characteristic findings. DISCUSSION: We found that creatine kinase levels and motor, respiratory, and cardiac functions each exhibited various changes over time. These findings provide useful information about the longitudinal data of several outcome measures for patients with DMD not receiving corticosteroids. These data may serve as historical controls in comparing the natural history of DMD patients not on regular steroid use in appropriate clinical trials.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Adulto Jovem , Adulto , Criança , Pré-Escolar , Distrofia Muscular de Duchenne/tratamento farmacológico , Volume Sistólico , Função Ventricular Esquerda , Corticosteroides/uso terapêutico , Creatina Quinase
4.
SAGE Open Med Case Rep ; 12: 2050313X231221436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38187815

RESUMO

Becker muscular dystrophy is caused by DMD mutations and is characterized by progressive muscle atrophy. The wide variations observed in muscle atrophy progression in Becker muscular dystrophy are considered multifactorial, including differences in mutations and environmental factors. In this case, two brothers, aged 2 and 3 years, had the identical DMD mutation, confirming their Becker muscular dystrophy diagnosis. They began using handrails when ascending and descending stairs at the age of 16 due to progressive muscular weakness. Over an 18-year follow-up, the older brother consistently had high serum creatine kinase levels, significantly over median levels. Muscle computed tomography finings revealed that the older brother's gluteus maximus and vastus femoris cross-sectional areas were only half and one-third of the younger brother's, respectively. The mean computed tomography values of gluteus maximus and vastus femoris were significantly lower in the older brother. Our report suggests that muscle atrophy in Becker muscular dystrophy cannot be solely explained by dystrophin mutation or environmental factors.

5.
Genes (Basel) ; 14(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38136980

RESUMO

The survival motor neuron 2 (SMN2) gene is a recognized modifier gene of spinal muscular atrophy (SMA). However, our knowledge about the role of SMN2-other than its modification of SMA phenotypes-is very limited. Discussions regarding the relationship between homozygous SMN2 deletion and motor neuron diseases, including amyotrophic lateral sclerosis, have been mainly based on retrospective epidemiological studies of the diseases, and the precise relationship remains inconclusive. In the present study, we first estimated that the frequency of homozygous SMN2 deletion was ~1 in 20 in Japan. We then established a real-time polymerase chain reaction (PCR)-based screening method using residual dried blood spots to identify infants with homozygous SMN2 deletion. This method can be applied to a future prospective cohort study to clarify the relationship between homozygous SMN2 deletion and motor neuron diseases. In our real-time PCR experiment, both PCR (low annealing temperatures) and blood (high hematocrit values and low white blood cell counts) conditions were associated with incorrect results (i.e., false negatives and positives). Together, our findings not only help to elucidate the role of SMN2, but also aid in our understanding of the pitfalls of current SMA newborn screening programs for detecting homozygous SMN1 deletions.


Assuntos
Atrofia Muscular Espinal , Lactente , Recém-Nascido , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estudos Retrospectivos , Estudos Prospectivos , Deleção de Genes , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Neurônios Motores , Triagem Neonatal/métodos , Proteína 2 de Sobrevivência do Neurônio Motor/genética
6.
Genes (Basel) ; 14(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38137033

RESUMO

Newborn screening (NBS) for spinal muscular atrophy (SMA) is necessary, as favorable outcomes can be achieved by treatment with disease-modifying drugs in early infancy. Although SMA-NBS has been initiated in Japan, its clinical results have not been fully reported. We report the findings of the initial 2.5 years of a pilot SMA-NBS of approximately 16,000 infants conducted from February 2021 in Hyogo Prefecture, Japan. Clinical data of 17 infants who tested positive were retrospectively obtained from the NBS follow-up centers participating in this multicenter cohort observational study. Genetic testing revealed 14 false positives, and three infants were diagnosed with SMA. Case 1 had two copies of survival motor neuron (SMN) 2 and showed SMA-related symptoms at diagnosis. Case 2 was asymptomatic, with two copies of SMN2. Asymptomatic case 3 had four copies of SMN2 exon 7, including the SMN1/2 hybrid gene. Cases 1 and 2 were treated within 1 month and case 3 at 8 months. All the patients showed improved motor function scores and did not require respiratory support. The identification of infants with SMA via NBS and early treatment improved their motor and respiratory outcomes. Thus, implementation of SMA-NBS at a nationwide scale should be considered.


Assuntos
Atrofia Muscular Espinal , Triagem Neonatal , Lactente , Recém-Nascido , Humanos , Japão , Estudos Retrospectivos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/epidemiologia , Atrofia Muscular Espinal/genética , Testes Genéticos
7.
Ann Clin Transl Neurol ; 10(12): 2360-2372, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37882106

RESUMO

OBJECTIVE: Becker muscular dystrophy (BMD) is a milder variant of Duchenne muscular dystrophy (DMD), a lethal X-linked muscular disorder. Here, we aim to investigat the clinical involvement of skeletal, respiratory, cardiac, and central nervous systems in patients with BMD, as well as genotype-phenotype relationships. METHODS: This nationwide cohort study investigated the clinical manifestations and genotype-phenotype relationships in 225 patients with BMD having in-frame deletion from 22 medical centers. The primary outcome was to elucidate the association of genotype with skeletal muscle, respiratory, cardiac, and central nervous system disorders. Descriptive statistics were used to analyze the data. RESULTS: The average age of the subjects was 31.5 (range, 1-81) years. Initial symptoms of BMD were muscular (60%), followed by asymptomatic hypercreatine kinasemia (32.4%) and central nervous system disorders (5.3%). Gait disturbance was observed in 53.8% of patients and the average age at wheelchair introduction was 36.5 years. The ventilator introduction rate was 6.7% at an average age of 36.6 years. More than 30% of patients had an abnormal electrocardiogram and approximately 15% had heart failure symptoms. Cardiac function on echocardiography varied significantly among the patients. The frequencies of seizures and intellectual/developmental disability were 8.0% and 16.9%, respectively. Exon 45-47deletion (del) was the most common (22.6%), followed by exon 45-48del (13.1%). Patients with exon 45-49del patients demonstrated severe skeletal muscle damage. Patients with exon 45-47del and exon 45-55del patients did not require ventilator use. INTERPRETATION: The study provides important prognostic information for patients and clinicians to establish therapy plans and to implement preventative medicine.


Assuntos
Doenças do Sistema Nervoso Central , Cardiopatias , Deficiência Intelectual , Distrofia Muscular de Duchenne , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Estudos de Coortes , Genótipo
8.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569314

RESUMO

Spinal muscular atrophy (SMA) is a lower motor neuron disease with autosomal recessive inheritance. The first cases of SMA were reported by Werdnig in 1891. Although the phenotypic variation of SMA led to controversy regarding the clinical entity of the disease, the genetic homogeneity of SMA was proved in 1990. Five years later, in 1995, the gene responsible for SMA, SMN1, was identified. Genetic testing of SMN1 has enabled precise epidemiological studies, revealing that SMA occurs in 1 of 10,000 to 20,000 live births and that more than 95% of affected patients are homozygous for SMN1 deletion. In 2016, nusinersen was the first drug approved for treatment of SMA in the United States. Two other drugs were subsequently approved: onasemnogene abeparvovec and risdiplam. Clinical trials with these drugs targeting patients with pre-symptomatic SMA (those who were diagnosed by genetic testing but showed no symptoms) revealed that such patients could achieve the milestones of independent sitting and/or walking. Following the great success of these trials, population-based newborn screening programs for SMA (more precisely, SMN1-deleted SMA) have been increasingly implemented worldwide. Early detection by newborn screening and early treatment with new drugs are expected to soon become the standards in the field of SMA.


Assuntos
Atrofia Muscular Espinal , Recém-Nascido , Humanos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Testes Genéticos , Homozigoto , Triagem Neonatal , Padrões de Herança
9.
J Cardiol ; 82(5): 363-370, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37481234

RESUMO

PURPOSE: Duchenne muscular dystrophy (DMD) is an inherited muscular disease characterized by progressive and fatal muscle weakness. Electrocardiographic (ECG) abnormalities, including abnormal R wave amplitudes are frequently observed in DMD. However, clinical implications of abnormal R wave amplitudes remain unclear. Hence, DMD patients were examined for changes in R wave amplitude over time using synthesized 18-lead ECG and the relationship between R wave amplitude and cardiac function. METHODS: The results of 969 ECG examinations of 193 patients with DMD who underwent electrocardiography and echocardiography on the same day were retrospectively reviewed. RESULTS: A negative correlation was observed between R wave amplitude and age. Positive correlations between R wave amplitude and left ventricular ejection fraction were observed in leads V4, V5, V6, syn-V7, syn-V8, and syn-V9, with V6 showing the strongest correlation (r = 0.52). Mean R wave amplitude during cardiac dysfunction was lower than that observed with preserved cardiac function in leads V6 to syn-V9. Patients had preserved R wave amplitude up to three years before the onset of cardiac dysfunction, with a sharp decrease two years before cardiac dysfunction in leads V6 to syn-V9. CONCLUSIONS: In DMD patients, the R wave amplitude decreases with age. The sharp decline in R amplitude two years before cardiac dysfunction indicates that electrophysiological damage to the myocardium of the left ventricle lateral to the posterior wall precedes the finding of cardiac dysfunction. The R amplitude in V6 of the standard 12-lead ECG is a convenient predictive marker of cardiac dysfunction, similar to that of the 18-lead ECG.


Assuntos
Cardiopatias , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/diagnóstico , Volume Sistólico , Estudos Retrospectivos , Função Ventricular Esquerda , Eletrocardiografia , Arritmias Cardíacas
11.
Genes (Basel) ; 13(11)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36421785

RESUMO

Spinal muscular atrophy (SMA) is a common devastating neuromuscular disorder, usually involving homozygous deletion of the SMN1 gene. Newly developed drugs can improve the motor functions of infants with SMA when treated in the early stage. To ensure early diagnosis, newborn screening for SMA (SMA-NBS) via PCR-based genetic testing with dried blood spots (DBSs) has been spreading throughout Japan. In Hyogo Prefecture, we performed a pilot study of SMA-NBS to assess newborn infants who underwent routine newborn metabolic screening between February 2021 and August 2022. Hyogo Prefecture has ~40,000 live births per year and the estimated incidence of SMA is 1 in 20,000-25,000 based on genetic testing of symptomatic patients with SMA. Here, we screened 8336 newborns and 12 screen-positive cases were detected by real-time PCR assay. Multiplex ligation-dependent probe amplification assay excluded ten false positives and identified two patients. These false positives might be related to the use of heparinized and/or diluted blood in the DBS sample. Both patients carried two copies of SMN2, one was asymptomatic and the other was symptomatic at the time of diagnosis. SMA-NBS enables us to prevent delayed diagnosis of SMA, even if it does not always allow treatment in the pre-symptomatic stage.


Assuntos
Atrofia Muscular Espinal , Lactente , Humanos , Recém-Nascido , Homozigoto , Projetos Piloto , Japão/epidemiologia , Deleção de Sequência , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/epidemiologia , Atrofia Muscular Espinal/genética , Reação em Cadeia da Polimerase em Tempo Real
12.
Vaccines (Basel) ; 10(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36366340

RESUMO

Rotavirus (RV) is the leading cause of acute gastroenteritis (AGE), particularly in infants. In 2006, the high efficacy of oral RV vaccines (RVVs, RotarixTM and RotaTeqTM) was demonstrated. Voluntary RVV started in Japan in 2011, and in October 2020 were launched as universal oral RVVs in Japan. However, the impact of changes from voluntary to universal RVVs has not been studied in a primary emergency medical center in Japan. We investigated changes in the number of pediatric patients with AGE after introducing universal RVVs in our center. A clinical database of consecutive patients aged <16 who presented to Kobe Children's Primary Emergency Medical Center between 1 April 2016 and 30 June 2022 was reviewed. After implementing universal RVVs, fewer children presented with RV-associated AGE (the reduction of proportion of the patients in 2022 was −61.7% (all ages), −57.9% (<1 years), −67.8% (1−<3 years), and −61.4% (3−<5 years) compared to 2019). A similar decrease in those of age who were not covered by the universal RVV was observed. There was a significant decline in the number of patients with AGE during the RV season who presented to the emergency department after implementing universal RVVs.

13.
Opt Express ; 30(20): 36889-36899, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258609

RESUMO

We propose a magneto-optical diffractive deep neural network (MO-D2NN). We simulated several MO-D2NNs, each of which consists of five hidden layers made of a magnetic material that contains 100 × 100 magnetic domains with a domain width of 1 µm and an interlayer distance of 0.7 mm. The networks demonstrate a classification accuracy of > 90% for the MNIST dataset when light intensity is used as the classification measure. Moreover, an accuracy of > 80% is obtained even for a small Faraday rotation angle of π/100 rad when the angle of polarization is used as the classification measure. The MO-D2NN allows the hidden layers to be rewritten, which is not possible with previous implementations of D2NNs.

14.
Am J Med Genet A ; 188(9): 2576-2583, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35785516

RESUMO

Gitelman syndrome (GS) is a rare, autosomal recessive, salt-losing tubulopathy caused by loss of function in the SLC12A3 gene (NM_000339.2), which encodes the natrium chloride cotransporter. The detection of homozygous or compound heterozygous SLC12A3 variants is expected in GS, but 18%-40% of patients with clinical GS carry only one mutant allele. Previous reports identified some pathogenic deep intronic variants in SLC12A3. Here, we report the screening of SLC12A3 deep intronic variants in 13 patients with suspected GS carrying one mutated SLC12A3 allele. Variant screening used the HaloPlex Target Enrichment System Kit capturing whole introns and the promotor region of SLC12A3, followed by SureCall variant analysis. Rare intronic variants (<1% frequency) were identified, and pathogenicity evaluated by the minigene system. Deep intronic variant screening detected seven rare SLC12A3 variants from six patients. Only one variant showed pathogenicity in the minigene system (c.602-16G>A, intron 4) through activation of a cryptic acceptor site. No variants were detected in the promotor region. Deep intronic screening identified only one pathogenic variant in patients with suspected GS carrying monoallelic SLC12A3 variants. Our results suggest that deep intronic variants partially explain the cause of monoallelic variants in patients with GS.


Assuntos
Síndrome de Gitelman , Alelos , Síndrome de Gitelman/diagnóstico , Síndrome de Gitelman/genética , Humanos , Íntrons/genética , Mutação , Membro 3 da Família 12 de Carreador de Soluto/genética
15.
Genes (Basel) ; 13(4)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35456491

RESUMO

Spinal muscular atrophy (SMA) is caused by survival motor neuron 1 SMN1 deletion. The survival motor neuron 2 (SMN2) encodes the same protein as SMN1 does, but it has a splicing defect of exon 7. Some antisense oligonucleotides (ASOs) have been proven to correct this defect. One of these, nusinersen, is effective in SMA-affected infants, but not as much so in advanced-stage patients. Furthermore, the current regimen may exhibit a ceiling effect. To overcome these problems, high-dose ASOs or combined ASOs have been explored. Here, using SMA fibroblasts, we examined the effects of high-concentration ASOs and of combining two ASOs. Three ASOs were examined: one targeting intronic splicing suppressor site N1 (ISS-N1) in intron 7, and two others targeting the 3' splice site and 5' region of exon 8. In our experiments on all ASO types, a low or intermediate concentration (50 or 100 nM) showed better splicing efficiency than a high concentration (200 nM). In addition, a high concentration of each ASO created a cryptic exon in exon 6. When a mixture of two different ASOs (100 nM each) was added to the cells, the cryptic exon was included in the mRNA. In conclusion, ASOs at a high concentration or used in combination may show less splicing correction and cryptic exon creation.


Assuntos
Atrofia Muscular Espinal , Oligonucleotídeos Antissenso , Fibroblastos/metabolismo , Humanos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Sítios de Splice de RNA , Splicing de RNA , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
17.
Adv Ther ; 39(5): 1915-1958, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307799

RESUMO

INTRODUCTION: The recent advent of disease-modifying therapies (DMTs) has dramatically changed the treatment landscape of spinal muscular atrophy (SMA), and the multifaceted impact of this advancement has not been assessed thoroughly in the growing body of literature. We sought to summarize the literature on the natural history of SMA and the impact of SMA DMTs, including health-related quality of life (HRQOL) and utilities, clinical efficacy and safety, and economic impact. METHODS: Systematic literature reviews were conducted following PRISMA guidelines with no inclusive dates. Relevant studies were identified by searching full-text databases on November 12-13, 2020, including MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, and EconLit, conference proceedings, health technology assessment databases, and clinical trial registries. All searches used a combination of MeSH and key terms. Studies were screened according to criteria based upon population, intervention, outcomes, and study design structure. RESULTS: Findings from 17, 23, 32, and 42 studies were included for the evaluation of natural history of SMA, HRQOL and utilities, clinical efficacy and safety, and economic impact of DMTs, respectively. Currently available data indicate that untreated SMA is associated with considerable humanistic and economic burden, with estimates of costs varying by treatment. While a variety of interventions have been evaluated in SMA clinical trials, quantitative synthesis of safety and efficacy findings was not feasible because of inconsistencies in reported outcomes. Data assessing impacts of DMTs on HRQOL were also lacking. CONCLUSIONS: Overall, this systematic literature review highlights a clear need for up-to-date and methodologically rigorous clinical, HRQOL, and economic data to support unbiased assessments of the relative clinical and economic effectiveness of SMA treatments. More research is required to extend our understanding of the burden of SMA on HRQOL utility assessments and the impact of new DMTs on HRQOL and utilities for patients with SMA.


Assuntos
Atrofia Muscular Espinal , Qualidade de Vida , Custos e Análise de Custo , Humanos , Atrofia Muscular Espinal/tratamento farmacológico
18.
Animal Model Exp Med ; 5(1): 48-55, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35229992

RESUMO

The mdx mouse is a model of Duchenne muscular dystrophy (DMD), a fatal progressive muscle wasting disease caused by dystrophin deficiency, and is used most widely in preclinical studies. Mice with dystrophin deficiency, however, show milder muscle strength phenotypes than humans. In human, the introduction of a sandwich enzyme-linked immunosorbent assay (ELISA) kit revealed a more than 700-fold increase in titin N-terminal fragment levels in the urine of pediatric patients with DMD. Notably, the urinary titin level declines with aging, reflecting progression of muscle wasting. In mouse, development of a highly sensitive ELISA kit has been awaited. Here, a sandwich ELISA kit to measure titin N-terminal fragment levels in mouse urine was developed. The developed kit showed good linearity, recovery, and repeatability in measuring recombinant or natural mouse titin N-terminal fragment levels. The titin N-terminal fragment concentration in the urine of mdx mice was more than 500-fold higher than that of normal mice. Urinary titin was further analyzed by extending the collection of urine samples to both young (3-11 weeks old) and aged (56-58 weeks old) mdx mice. The concentration in the young group was significantly higher than that in the aged group. It was concluded that muscle protein breakdown is active and persistent in mdx mice even though the muscle phenotype is mild. Our results provide an opportunity to develop DMD treatments that aim to alleviate muscle protein breakdown by monitoring urinary titin levels.


Assuntos
Distrofia Muscular de Duchenne , Animais , Criança , Conectina/urina , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Camundongos Endogâmicos mdx , Força Muscular , Distrofia Muscular de Duchenne/genética , Proteínas Quinases
19.
Mol Genet Metab Rep ; 31: 100849, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35242581

RESUMO

Menkes disease (MD) is an X-linked recessive disorder caused by mutations in ATP7A. Patients with MD exhibit severe neurological and connective tissue disorders due to copper deficiency and typically die before 3 years of age. Early treatment with copper injections during the neonatal period, before the occurrence of neurological symptoms, can alleviate neurological disturbances to some degree. We investigated whether early symptoms can help in the early diagnosis of MD. Abnormal hair growth, prolonged jaundice, and feeding difficulties were observed during the neonatal period in 20 of 69, 16 of 67, and 3 of 18 patients, respectively. Only three patients visited a physician during the neonatal period; MD diagnosis was not made at that point. The mean age at diagnosis was 8.7 months. Seven patients, who were diagnosed in the prenatal stage or soon after birth, as they had a family history of MD, received early treatment. No diagnosis was made based on early symptoms, highlighting the difficulty in diagnosing MD based on symptoms observed during the neonatal period. Patients who received early treatment lived longer than their elderly relatives with MD. Three patients could walk and did not have seizures. Therefore, effective newborn screening for MD should be prioritized.

20.
Muscle Nerve ; 65(5): 521-530, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35174514

RESUMO

INTRODUCTION/AIMS: Serum cardiac troponin I (cTnI), its relation to cardiomyopathy, and the contribution of the ACTN3 genotype to serum levels of cTnI in Duchenne and Becker muscular dystrophy (DMD and BMD, respectively) remain unknown. In this study we aimed to reveal the characteristics of cTnI, assess whether cTnI is a biomarker for cardiomyopathy in these dystrophinopathies, and evaluate the contribution of the ACTN3 genotype to the serum levels of cTnI in DMD patients. METHODS: Serum cTnI values obtained from 127 DMD and 47 BMD patients were analyzed retrospectively. The relationship between cTnI and echocardiography data or the ACTN3 XX genotype was assessed. RESULTS: The cTnI levels and proportion of patients with abnormal cTnI levels were significantly higher among DMD patients than BMD, especially in the second decade of life. In DMD, the cTnI level reached a maximum at 13 years, and left ventricular ejection fraction (LVEF) became abnormal approximately 1 year subsequently. In BMD, the cTnI level peaked at the age of 14 years, and LVEF became abnormal 3 years later. Decreased LVEF was observed after cTnI elevation in both populations. cTnI levels by age in DMD patients with the ACTN3 XX genotype tended to increase significantly and early. DISCUSSION: Myocardial injury indicated by cTnI elevation was more common and severe in DMD patients. cTnI elevation preceding cardiac dysfunction may represent an early phase of cardiomyopathy progression and may be a biomarker for early detection of cardiomyopathy in these dystrophinopathies. The ACTN3 XX genotype may be a risk factor for early myocardial injury.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Actinina/genética , Adolescente , Biomarcadores , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Humanos , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Estudos Retrospectivos , Volume Sistólico , Troponina I , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...